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We extend the self-consistent Ornstein�Zernike approximation (SCOZA), first
formulated in the context of liquid-state theory, to the study of the random field
Ising model. Within the replica formalism, we treat the quenched random field
just as another spin variable, thereby avoiding the usual average over the ran-
dom field distribution. This allows us to study the influence of the distribution
on the phase diagram in finite dimensions. The thermodynamics and the
correlation functions are obtained as solutions of a set a coupled partial dif-
ferential equations with magnetization, temperature, and disorder strength as
independent variables. A preliminary analysis based on high-temperature and
1�d series expansions shows that the theory can predict accurately the
dependence of the critical temperature on disorder strength (no sharp transition,
however, occurs for d�4). For the bimodal distribution, we find a tricritical
point which moves to weaker fields as the dimension is reduced. For the
Gaussian distribution, a tricritical point may appear for d around 4.

KEY WORDS: Disordered systems; Ornstein�Zernike equations; random
field Ising model.

I. INTRODUCTION

Our understanding of the full phase diagram of randomly disordered
magnetic systems in finite dimensions is severely hampered by the lack of
a theory that takes into account the effect of fluctuations in an approximate
but sensible fashion. This is probably the reason why the nature of the
paramagnetic to ferromagnetic transition in the random field Ising model
(RFIM) is still under debate after nearly twenty years of intensive studies
(for reviews see refs. 1�3). The influence of the random field distribution on
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the order of the transition is one of the important open problems. Whereas
mean-field theory, (4, 5) which should be valid in high dimensions, predicts
that some distributions give rise to a tricritical point, neither numerical
simulations(6�9) nor high-temperature series expansions (10�12) have been
able to yield a clear-cut answer yet. Recent numerical determinations of the
ground states at zero temperature do not seem to clarify this issue.(13, 14) In
addition, as suggested by several analytical works, (15�19) it may be that the
true phase diagram is more complicated than anticipated, with the occur-
rence of an intermediate ``glassy'' phase signaled by a breaking of symmetry
in the replica formalism. The fact that the RFIM, for a certain range of
temperatures and fields, has a complicated energy landscape (so that the
mean-field equations for the local magnetizations have many solutions(20))
also explains the failure of standard renormalization group perturbation
theory(21, 22) and the breakdown of dimensional reduction.

In this work, we propose a theory for the RFIM that allows an
approximate study of the influence of dimensionality on equilibrium prop-
erties. This is done by extending to this model the so-called self-consistent
Ornstein�Zernike approximation (SCOZA) developed by Hoye and Stell(23)

for simple fluid and lattice-gas systems. Recently, the SCOZA has been
shown to provide a very good description of the properties of the three-
dimensional Ising model, even in the close vicinity of the critical point.(24)

We expect that the same approximation scheme will be useful in the case
of disordered systems, as well. In a previous work, (25) we studied as a first
application the site-diluted Ising model, showing that this approach can
indeed provide an accurate description of the dependence of the critical
temperature on dilution. To overcome the lack of translational invariance
of the Hamiltonian due to the random disorder, we applied the replica
method in an unusual way, replacing the original system by n+1 coupled
systems with translationally invariant interactions. In the following, we
shall use the same procedure and assume that there is no violation of
replica symmetry. Our formalism can be generalized to study a possible
replica symmetry breaking, but this question will be adressed in a
forthcoming paper dealing also with the spin glass problem.(26) One expects
that replica symmetry breaking has only a minor effect on nonuniversal
properties which are the main focus of this article.

The paper is organized as follows. In Section II, we derive the replica-
symmetric Ornstein�Zernike equations for the RFIM. In Section III, we
introduce successively the Random Phase approximation (which is just
another way of obtaining the mean-field thermodynamics) and the
Optimized Random Phase approximation, which represents a first improve-
ment on mean-field theory for hard-spin systems in finite dimensions.
We then derive in Section IV the SCOZA partial differential equations for
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the Gaussian and bimodal distributions of the random field. In Section IV,
we give a preliminary analysis of the solution in terms of high-temperature
and 1�d series expansions. A summary and a discussion are provided in
Section V.

II. REPLICA-SYMMETRIC ORNSTEIN�ZERNIKE EQUATIONS

The RFIM is defined by the Hamiltonian

H= &J :
(ij)

_i _j&:
i

(H+hi) _i (1)

where J>0, _i=\1, and (ij) indicates that the sum is over pairs of
nearest neighbor sites of a d-dimensional lattice. H is a uniform magnetic
field and the local fields hi are independent random variables distributed
according to some common probability distribution P(h). Quenched ther-
modynamic averages are defined by

(A) T =Tr[exp(&;H) A]�Tr[exp(&;H)] (2)

where ;=1�(kBT ) and the overbar denotes an average over the random
field distribution. If not stated otherwise, we shall concentrate on the class
of distributions that depend on a single positive parameter h0 which
measures the strength of disorder. They thus satisfy

P(h) dh=P({) d{ (3)

where {=h�h0 and P({) is independent of h0 . This includes the much
studied Gaussian distribution,

P(h)=(2?h2
0)&1�2 exp[&h2�(2h2

0)] (4)

and the bimodal distribution,

P(h)= 1
2 [$(h&h0)+$(h+h0)] (5)

In the first case, the quenched variables {i are continuous (soft) spin
variables whereas they only take the values \1 (Ising-like) in the second
case. The crucial point is that both quenched and annealed variables,
{i and _i respectively, are present. Such quenched-annealed two-species
systems have been previously introduced in the context of liquid-state
theory to describe continuum fluids adsorbed in porous media.(27, 28) The
replica method was used to obtain a set of exact equations for the pair
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correlation functions (29) and to derive thermodynamic relations. (30) The
same technique can be used here. We first introduce n copies of the
annealed spin variables and consider the Hamiltonian

Hn= &J :
(ij), a

_a
i _a

j &h0 :
i, a

{i_a
i &H :

i, a

_a
i (6)

Now, in contrast with what is usually done, we do not perform the
average over the disorder variables to get an effective Hamiltonian (see
however Appendix A). We treat the variables [_a

i ] and [{i ] on an equal
footing and we consider Hrep([_a

i ], [{i ])=Hn&1�; �i ln P({i) as the
Hamiltonian of a mixture of (n+1) spin species. The corresponding free
energy is Frep=&1�; ln[Tr exp(&;Hrep)], where the trace is taken over
[_a

i ] and [{i ]. The average free energy of the RFIM is then given by

F=&
1
;

lim
n � 0

1
n

[exp(&;Frep)&1] (7)

and the average magnetization m=(_i)T is given by

m= lim
n � 0

1
n

:
a

(_a
i ) rep (8)

where ( } } } ) rep denotes the average with respect to Hrep . The disconnected
and connected correlation functions, Gdis(r)=(_0) T (_r) T &m2 and
Gcon(r)=(_0 _r) T&(_0) T (_r) T , are related to the replica correlation
functions Gab(r)=(_a

0_b
r ) rep&(_a

0) rep (_b
r ) rep (a, b=1 } } } n) by

Gdis(r)= lim
n � 0

1
n(n&1)

:
a{b

Gab(r) (9)

and

Gcon(r)= lim
n � 0

1
n

:
a

Gaa(r)&Gdis(r) (10)

We also introduce the correlation functions G00(r)={0{ r&{� 2 and G01(r)=
{0(_r) T &{� m which are related to the replica correlation functions G00(r)
=({0{r) rep&({0) rep ({ r) rep and G0a(r)=({0 _a

r ) rep&({0) rep (_a
r ) rep by

G00(r)= lim
n � 0

G00(r) (11)
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and

G01(r)= lim
n � 0

1
n

:
a

G0a(r) (12)

One has G00(r)=({2&{� 2) $r, 0 for the distribution functions of uncorrelated
random fields that are considered here (in principle, the case of correlated
fields can be studied with the present formalism as well). Because of the
hard spin condition _i=\1, one also has the sum-rule

G11(r=0)=1&m2 (13)

where G11(r)=Gcon(r)+Gdis(r) (the Fourier transform of G11(r) is the
structure factor measured, e.g., in scattering experiments(2)). Equation (13)
is equivalent to the so-called ``core'' condition in a lattice-gas.(31) On the
other hand,

Gcon(r=0)=1&q (14)

where q=(_i) 2
T is the standard spin-glass order parameter.

We now provisionally assume that the external magnetic field is non-
uniform, replica-dependent, and has an extra component H 0

i that acts on
the spin {i . One has ma

i =(_a
i ) rep=&�Frep ��Ha

i where a now represents
not only the n replicas 1 } } } n but also species 0 and _0

i and m0
i stand for

{i and ({i) rep , respectively. The Legendre transform that takes the fields
Ha

i into ma
i defines the Gibbs potential

Grep=Frep+:
i

:
n

a=0

Ha
i ma

i (15)

which satisfies

Ha
i =

�Grep

�ma
i

(16)

Grep generates the direct correlation functions (or proper vertices in field-
theoretic language) which we define by

Cab
ij =;

�2Grep

�ma
i �mb

j

(a, b=0, 1,..., n) (17)
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Since Gab
ij =&1�; �2Frep��Ha

i �Hb
j , we have a set of Ornstein�Zernike

equations

:
l

:
n

c=0

Gac
il Ccb

lj =$i, j $a, b (18)

which, in the limit of a uniform replica-independent magnetic field, become
in Fourier space

:
n

c=0

G� ac(k) C� cb(k)=$a, b (19)

By taking the limit n � 0 and assuming replica symmetry, we finally obtain

G� 00(k)=
1

C� 00(k)
(20a)

G� con(k)=
1

C� con(k)
(20b)

G� dis(k)=_
C� 2

01(k)

C� 00(k)
&C� dis(k)& 1

C� 2
con(k)

(20c)

G� 01(k)=&
C� 01(k)

C� 00(k) C� con(k)
(20d)

where the C 's are related to the corresponding replica direct correlation
functions by relations similar to Eqs. (9)�(12). Note that the first equation
decouples from the other ones, as it should be, and that G01=G10 and
C01=C10 by symmetry. These equations, hereafter called the replica-sym-
metric Ornstein�Zernike (RSOZ) equations, represent the starting point of
our study. Apart from a few notational changes, they are the same as those
originally derived by Given and Stell(29) for a quenched-annealed mixture
in the context of liquid-state theory (see also refs. 32 and 33 for an applica-
tion to a lattice-gas model of a fluid in a disordered matrix). Because of the
Legendre transform, m is now a control variable at our disposal instead of
H, and in the following all quantities will be considered as functions of the
three independent variables m, J� =;cJ (where c is the coordination number
of the lattice) and h� 0=;h0 . We shall be especially concerned with the
behavior of the susceptibility /(m, J� , h� 0)=�m��(;H) given by

/(m, J� , h� 0)=G� con(k=0)=
1

C� con(k=0)
(21)
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In the approximate theories that are discussed below, the divergence of /
at fixed h0 defines the spinodal line in the T&m plane. For a symmetric
distribution (i.e., P(h)=P(&h)), and if the transition is continuous, the
critical point is reached when the spinodal meets the magnetization curve
at m=0. Alternatively, we can locate the critical temperature by plotting
/&1(m=0) as a function of J� at fixed h0 .

III. RANDOM PHASE AND OPTIMIZED RANDOM PHASE
APPROXIMATIONS

A. Random Phase Approximation

When one turns off the exchange interaction in the RFIM
Hamiltonian H, all quenched-averaged quantities can be calculated
straightforwardly by direct averaging over the random field distribution.
Hereafter, we shall call the system where J=0 the reference system. One
then has

m=tanh ;(h0{+H ) (22)

which can be inverted to get ;H as a function of m and h� (at least under
the form of an infinite series). Then

qref=tanh2 ;(h0{+H ) (23)

becomes a function of m and h� 0 . For instance,

qref (m, h� 0)=m2+(1&m2)2 [h� 2
0&2(1&2m2) h� 4

0

+ 1
3 (81m4&90m2+17) h� 6

0+O(h� 8
0)] (24)

for the Gaussian distribution, and

qref (m, h� 0)=m2+(1&m2)2 [h� 2
0& 2

3 (3m2+1) h� 4
0

+ 1
45 (225m4+30m2+17) h� 6

0+O(h� 8
0)] (25)

for the bimodal distribution.
In the reference system, all correlation functions are purely local,

G ref
con(r)=(1&qref ) $r, 0 (26)

G ref
dis(r)=(qref&m2) $r, 0 (27)

G ref
01(r)=vref $ r, 0 (28)
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where vref (m, h� 0)={ tanh ;(h0{+H )&{� m. From the RSOZ equations, we
then get

C ref
con(r)=

1
1&qref

$ r, 0 (29)

C ref
dis(r)=

v2
ref c00&qref+m2

(1&qref )2 $ r, 0 (30)

C ref
01(r)= &

vref c00

1&qref

$r, 0 (31)

where c00=({2&{� 2)&1 (c00=1 for the symmetric Gaussian and bimodal
distributions defined by Eqs. (4) and (5)). Note that a special feature of the
bimodal distribution is that C ref

dis(r)=0, as can be readily checked.
Once a reference system has been chosen, the Random Phase approxi-

mation (RPA) consists in adding to the direct correlation fonctions of the
reference system the pair interactions which had been turned off (see, e.g.,
ref. 34). In the present case, since there is no direct interaction between dis-
tinct replicas in the Hamiltonian Hrep (because the average over disorder
has not been performed explicitly), the RPA in Fourier space writes

C� RPA
con (k)=C� ref

con(k)&J� *� (k) (32a)

C� RPA
dis (k)=C� ref

dis(k) (32b)

C� RPA
01 (k)=C� ref

01(k) (32c)

where *� (k)=1�c �e exp(ik } e) is the characteristic function of the lattice
and e denotes a vector from the origin to one of its nearest neighbors.
Using Eqs. (21) and (29), this leads to

/RPA=
1&qref

1&zRPA

(33)

where zRPA=J� (1&qref ). The same result is obtained by differentiating the
mean-field expression of the magnetization, (4)

m=tanh ;(cJm+h0{+H ) (34)

with respect to ;H. Therefore, the above RPA description is equivalent to
the standard mean-field theory of the RFIM.(4, 5) Note however that the
RPA free energy is identical to the mean-field free energy only when it is
obtained by integration of the susceptibility. As will be stressed in Section IV,
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there are several routes to obtain the thermodynamics from the correlation
functions, and when the latter are only known approximately the different
routes may not lead to the same results. For spin systems, the free energy
or the Gibbs potential can be computed either from the susceptibility given
by Eq. (21) or by integrating with respect to temperature the enthalpy
which is itself expressed in terms of the pair correlation functions. For sim-
plicity, we only discuss in this section the results of the susceptibility route.

Then, for a symmetric distribution, and if the transition is second-
order, the boundary between the ferromagnetic and paramagnetic phases is
given in the RPA by zRPA(m=0, J� c , h� 0)=1, i.e.,

J� c[1&qref (m=0, h� 0)]=1 (35)

In this approximation, the transition remains second-order along the whole
phase boundary for the Gaussian distribution.(4) On the other hand, it
becomes first-order at sufficiently large disorder strength when the random
field distribution has a relative minimum at zero field.(5) For instance, the
tricritical point occurs at J� t=3�2, tanh2(h� 0, t)=1�3 for the bimodal dis-
tribution. Whether this scenario still holds in finite dimensions (i.e., when
c is small) is an open question.

B. Optimized Random Phase Approximation

One shortcoming of the RPA is that the sum-rule, Eq. (13), is not
satisfied. Indeed, from the RSOZ equations, we have

G� RPA
11 (k)=

1&qref

1&zRPA*� (k)
+

qref&m2

[1&zRPA*� (k)]2
(36)

(this expression leads to the well-known Lorentzian and Lorentzian-
squared terms in the mean field structure factor near k=0(2)). Introducing
the lattice Green's function(35)

P(r, z)=
1

(2?)d |
?

&?
d dk

eik } r

1&z*� (k)
(37)

and going back to real space, we get

G RPA
11 (r)=(1&qref ) P(r, zRPA)+(qref&m2)[P(r, zRPA)+zRPA P$(r, zRPA)]

(38)
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where P$(r, z)#�P(r, z)��z. We thus have

G RPA
11 (r=0)=(1&qref ) P(zRPA)+(qref&m2)[P(zRPA)+zRPA P$(zRPA)]

(39)

where P(z)#P(r=0, z). In general, this is different from 1&m2.
To cure this problem, one may simply add to C ref

con(r) a state- and
field-dependent perturbation potential that is different from zero at r=0
and chosen in such a way that Eq. (13) is satisfied (of course, in the true
system, the observables cannot depend on the value of the spin�spin inter-
action at r=0). Using the terminology of liquid-state theory, (34) we call this
approximation the Optimized Random Phase approximation (ORPA).(36)

We thus write

C� ORPA
con (k)=cc(m, J� , h� 0)&J� *� (k) (40)

whereas Eqs. (32b) and (32c) are left unchanged. Introducing zORPA=J� �cc ,
we now have

G� ORPA
11 (k)=

1�cc

1&zORPA*� (k)
+

qref&m2

(1&qref )2

1�c2
c

[1&zORPA *� (k)]2
(41)

and the sum-rule, Eq. (13), writes

zORPA

J�
P(zORPA)+

qref&m2

(1&qref )
2 \zORPA

J� +
2

_[P(zORPA)+zORPA P$(zORPA)]=1&m2 (42)

which is viewed as an implicit equation for zORPA(m, J� , h� 0).
The susceptibility /ORPA=zORPA �[J� (1&zORPA)] diverges when zORPA

=1. For a symmetric distribution, and if the transition is second-order, the
inverse critical temperature is then given by

P(1)

J� c
+

qref (m=0, h� 0)

[1&qref (m=0, h� 0)]2

P(1)+P$(1)

J� 2
c

=1 (43)

In the absence of quenched disorder (i.e., when h0=0), one has qref=m2

and the inverse critical temperature is given by J� c=P(1), i.e.,
;c=P(1)�(cJ). In this case, the ORPA is identical to the mean-spherical
approximation (MSA).(37) (The MSA can be extended to the RFIM by
choosing as reference the system where J=0 and h0=0; then, Eqs. (32b)
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and (32c) are replaced by C� MSA
dis (k)=0 and C� MSA

01 (k)= &h� 0 , which
amounts to a linearization of the ORPA expressions with respect to h� 0 .)

For d � �, P(z) � 1 and P$(z) � 0, and we recover from Eq. (43) the
mean-field equation for the critical temperature, Eq. (35). On the other
hand, for d�4, P$(z) diverges at z=1 (whereas P(1) diverges for d�2),
and the critical temperature, solution of Eq. (43), is driven to zero. This
unfortunate drawback is shared by any Ornstein�Zernike theory that
assumes that Ccon(r) has the same range as the exchange interaction and
that makes use of the susceptibility route. In this case, one finds from the
RSOZ equations that the critical exponents ' and '� , defined by
Gcon(r)tr&d+2&' and Gdis(r)tr&d+4&'� when r � � at the critical point,
are both zero. As a consequence, there is no critical point at nonzero tem-
perature for d�4 because this would lead to the unacceptable result that
G11(r) does not decrease to zero at long distances.

By using the expansion of P(z) about z=1 for d>2 and
d{4, 6, 8,..., (35)

P(z)=[P(1)+b1(1&z)+b2(1&z)2+ } } } ]

+(1&z)d�2&1 [c0+c1(1&z)+c2(1&z)2+ } } } ] (44)

(for d=4, 6, 8,..., there are logarithmic corrections), it is easily found from
Eq. (42) that for 4<d<6 the ORPA gives rise to the critical exponents of
the random-field spherical model, (38) i.e., &=1�(d&4), #=2�(d&4) and
$=d�(d&4). The mean-field exponents are recovered for d�6. Therefore
the ORPA susceptibility route leads to a d � d&2 dimensional reduction
that is a direct consequence of the Ornstein�Zernike approximation for the
direct correlation functions. On the other hand, it is easy to show that the
enthalpy route yields classical (mean-field) critical exponents. Both routes
give back the mean-field results in the limit d � �.

An illustration of the predictions of the ORPA is given in Tables I and
II for the 5-d hypercubic lattice (c=10, P(1)=1.156308, P$(1)=0.778633).
The inverse critical temperatures obtained from Eq. (43) are compared to
the best available estimates obtained from a fifteen-term high-temperature
series expansion of the susceptibility(12) (the disorder strength is measured
here in terms of the reduced variable g~ =h2

0�(cJ)2=h� 2
0 �J� 2; this differs from

the g defined in ref. 12 by the factor 1�c2). Although the ORPA represents
a clear improvement on mean-field theory, we see that the agreement with
the ``exact'' results deteriorates significantly as the field increases. For the
bimodal distribution, Eq. (43) has no solution when g~ �0.1199 and one
may suspect that the transition becomes first-order for the highest values of
the field. In order to decide on the existence of a tricritical point, we
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expand the inverse susceptibility around m=0 along the critical isotherm
and look for the change of sign of /&1�|m| $&1 at m=0 and J� =J� c . Since
/&1

ORPAt(1&zORPA) when zORPA � 1&, this amounts to expanding the
solution of Eq. (42). Using the expansion given in Eq. (44), we find after
some calculations that the two conditions for tricriticality are Eq. (43) and

A2(h� 0)

J� 2
c

[P(1)+P$(1)]=&1 (45)

where A2(h� 0) is the coefficient of m2 in the expansion of (qref &m2)�
(1&qref )

2 around m=0,

A2(h� 0)=
(1+t2)(1&t2)(1&3t2)

(1&t2)5
&

1

(1&t2)2
(46)

where t=tanh({h� 0). For the Gaussian distribution, Eqs. (43) and (45) have
no solution and no tricritical point appears in finite dimension. On the
other hand, there is always a solution for the bimodal distribution, and one
finds for instance g~ ORPA

t =0.117 and J� ORPA
t =1.85 for the 5-d hypercubic

lattice. By comparing to the mean-field predictions, g~ RPA
t =0.193 and

J� ORPA
t =1.5, we see that there is a range of fields where the transition is

driven first order by fluctuations, in agreement with the conclusion of a
previous high-temperature series analysis.(11) For more general symmetric
random-field distributions, a careful analysis of Eqs. (43) and (45) shows
that the conclusion of Aharony(5) based on mean-field theory remains
unchanged for the ORPA: a sufficient condition for the occurence of a tri-
critical point is that P(h) has a minimum at zero field.

IV. SELF-CONSISTENT ORNSTEIN�ZERNIKE
APPROXIMATION

As is well known in liquid-state theory and has been mentioned above,
solving the Ornstein�Zernike equations with an approximate expression of
the direct correlation functions like in the RPA, the ORPA or any other
approximate closure relation such as the Percus�Yevick approximation or
the hypernetted chain equation, (34) generally leads to thermodynamic
inconsistencies. In the language of magnetic systems, this means that dif-
ferent Gibbs potentials are obtained depending on whether one uses the
susceptibility or the enthalpy routes (the enthalpy is defined by E=G+
TS=U+MH where S and U are the entropy and internal energy,
respectively, and M=Nm is the total magnetization). For instance, in the
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pure Ising model, the former route corresponds to the double integration
of the equation /&1=C� (k=0)=�2(;G�N )��m2 with respect to m (at con-
stant T ), and the later to the integration of the Gibbs�Duhem relation E=
�;G��; with respect to ; (at constant m). The requirement that the two
routes lead to the same results is thus embodied in the relation �C� (k=0)�
�;=�2(E�N )��m2, provided that the appropriate initial conditions are
satisfied. Since the enthalpy per spin is given by E�N=(&J�N )_
�(ij) (_i _j)T=&cJ�2[G(r=e)+m2], this relation, together with the
Ornstein�Zernike equation, may be viewed as an exact equation for the
pair correlation function.

The extension to the RFIM is straightforward. Let us consider the
general variation of the average free energy due to variations of the three
control parameters J, h0 and H. We have

dF=&dJ :
(ij)

(_i _j) T &dh0 :
i

{i(_i) T &dH :
i

(_i)T (47)

Then, from the definitions of G11(r) and G01(r), we readily find that

d(;G�N )=& 1
2 (G11(r=e)+m2) dJ� &(G01(r=0)+{� m) dh� 0+;H dm (48)

On the other hand, we have from Eq. (17)

C� con(k=0)=
�2(;G�N )

�m2 (49)

so that we get the three ``Maxwell relations'':

�C� con(k=0)

�J�
=&1&

1
2

�2G11(r=e)
�m2 (50)

�G01(r=0)

�J�
=

1
2

�G11(r=e)

�h� 0

(51)

�C� con(k=0)

�h� 0

=&
�2G01(r=0)

�m2 (52)

Since the enthalpy density is given from the Hamiltonian H by

E�N=&
cJ
2

[G11(r=e)+m2]&h0[G01(r=0)+{� m] (53)
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the combination of Eqs. (50) and (52) yields

�C� con(k=0)
�;

=
�2(E�N )

�m2 (54)

which generalizes the self-consistency relation for the pure Ising model dis-
cussed above and used in ref. 24.

The SCOZA strategy is now the following. We assume that the three
direct correlation functions Ccon(r), Cdis(r) and C01(r) have the same range
as in the RPA but with values (for the present problem at r=0 and�or
r=e) which are state- and field-dependent. We thus write in Fourier space

C� SCOZA
con (k)=cc(m, J� , h� 0)[1&z(m, J� , h� 0) *� (k)] (55a)

C� SCOZA
dis (k)=cd (m, J� , h� 0) (55b)

C� SCOZA
01 (k)=c01(m, J� , h� 0) (55c)

(for notational simplicity, we do not use the index SCOZA for z, cc , cd and
c01). It follows from the RSOZ equations that

G SCOZA
con (r)=

1
cc

P(r, z) (56a)

G SCOZA
dis (r)=

c2
01�c00&cd

c2
c

�
�z

[zP(r, z)] (56b)

G SCOZA
01 (r)= &

c01

ccc00

P(r, z) (56c)

We then impose that the exact relations, Eq. (13) and Eqs. (50)�(52), be
satisfied. This leads to a set of partial differential equations (PDE) in the
unknown quantities z, cc , cd and c01 . This is not enough, however, because
only two of Eqs. (50)�(52) are independent provided that the appropriate
initial conditions are satisfied (for instance Eqs. (50) and (51)). We thus
need an additional relationship between the pair correlation functions.

This extra equation is readily found in the case of the Gaussian prob-
ability distribution which has the special property that � A {P({) d{=
� (dA�d{) P({) d{. Choosing A=(_i) T yields (_i) T {j=d(_ i) T �d{j=
;h0 (_i _j) T&(_i) T (_j) T , and one gets the exact relationship

G01(r)=h� 00Gcon(r) (57)

Since c00=1, this gives, when inserted in the RSOZ equations,

C� 01(k)=&h� 0 (58)
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We thus take c01=&h� 0 in the SCOZA equation (55c) and we use the sum-
rule, Eq. (13), to express cd as a function of cc ,

cd=h� 2
0+cc

P(z)&cc(1&m2)
P(z)+zP$(z)

(59)

Using the fact that the Green's function at nearest-neighbor separation
satisfies P(r=e, z)=[P(z)&1]�z, we finally obtain from Eqs. (50) and
(51) two coupled PDE's in z(m, J� , h� 0) and cc(m, J� , h� 0),

�

�J�
[cc(1&z)]= &1&

1
2

�2

�m2 _ 1
cc

P(z)&1
z

+\1&m2&
P(z)

cc +
P$(z)

P(z)+zP$(z)&
(60a)

�

�J� _
P(z)

cc &=
�

�(h� 2
0) _

1
cc

P(z)&1
z

+\1&m2&
P(z)

cc +
P$(z)

P(z)+zP$(z)& (60b)

When setting cc=P(z)�(1&m2) in these two equations, the first one
reduces to the PDE for the pure nearest-neighbor lattice-gas (h0=0, with
the usual substitution \=(1+m)�2 and w=4J) which has been studied in
ref. 24; see also the discussion in Section V. In fact, the exact relationship,
Eq. (57), suggests that it was unnecessary to introduce the correlation func-
tion G01(r) in the Gaussian case and that one could have averaged over the
quenched disorder from the outset, as is usually done. We show in
Appendix A that the same expressions of the correlation functions and of
the thermodynamic quantities are obtained within the SCOZA when one
uses this alternative route.

The case of the bimodal distribution is somewhat more complicated.
As already noticed, it also has a special property, namely, C ref

dis(r)=0.
However, Cdis(r) is not zero when J{0 and there is no reason a priori to
set cd (m, J� , h� 0)=0 in Eq. (55b). The solution to this problem consists in
introducing an additional independent variable that allows to control the
mean value of the random-field. Indeed, Eq. (17) tells us that

C 0a
ij =;

�2Grep

�m0
i �ma

j

(61)

which gives, in the limit n � 0 and for a uniform magnetic field,

C� 01(k=0)=
�2(;G�N )

�{� �m
(62)
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In consequence, we derive from Eq. (48) two additional Maxwell relations

�C� 01(k=0)

�J�
=&

1
2

�2G11(r=e)
�{� �m

(63)

�C� 01(k=0)

�h� 0

=&1&
�2G01(r=0)

�{� �m
(64)

Only three of Eqs. (50)�(52) and Eqs. (63)�(64) are independent but we
now have with Eq. (13) the right number of equations to determine
unambiguously z, cc , cd , and c01 . In Appendix B, we apply this procedure
to the asymmetric bimodal probability distribution P(h)=p$(h&h0)+
(1&p) $(h+h0). Since {� =2p&1, the parameter p can be varied indepen-
dently of m, J� and h� 0 to change {� . This leads to three PDE's, Eqs. (B3). Of
course, it is significantly more difficult to solve three PDE's than only two
and it is highly desirable to simplify the problem, especially if one is only
interested in the case p=1�2. Fortunately, it turns out that cd=0 is a very
good approximation to the full solution of Eqs. (B3) (more precisely, we
show in Appendix B that cd=0 through order ;6 in the high-temperature
series expansion of the solution of Eqs. (B3)). This is probably related to
the fact that one has C ref

dis(r)=0 even when p{1�2. With this approxima-
tion, we are left with only three unknown quantities, z, cc and c01 , which
can be determined by using Eq. (13) and Eqs. (50)�(51). Returning to the
case p=1�2 and introducing f (m, J� , h� 0)= &c01 �cc as a new unknown
variable, we eliminate cc from Eq. (13) (cf. Eq. (B2) with r= f ),

cc=
P(z)

1&m2& f 2[P(z)+zP$(z)]
(65)

and we finally obtain from Eqs. (50) and (51) two coupled PDE's in
z(m, J� , h� 0) and f (m, J� , h� 0) (cf. Eqs. (B3a) and (B3b) with r= f ),

�

�J� _
(1&z) P(z)

1&m2& f 2[P(z)+zP$(z)]&
= &1&

1
2

�2

�m2 {[1&m2& f 2(P(z)+zP$(z))]
P(z)&1

zP(z)
+ f 2P$(z)=

(66a)

�

�J�
[ fP(z)]=

1
2

�

�h� 0
{[1&m2& f 2(P(z)+zP$(z))]

P(z)&1
zP(z)

+ f 2P$(z)=
(66b)
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V. SERIES EXPANSIONS OF THE SCOZA SOLUTIONS FOR
THE GAUSSIAN AND BIMODAL DISTRIBUTIONS

To integrate the coupled PDE's, Eqs. (60) or (66), the initial values of
z, cc or f for J� =0 must be known. The quantity z is related to the second
moment correlation length ! defined by G� c(k)=G� c(k=0)[1&!2k2+ } } } ].
Specifically, one has z=c�(c+!&2). Therefore z=0 for J� =0 since all
correlation functions are local in the reference system (!=0). On the other
hand, cc, ref =1�(1&qref ) and in the bimodal case fref is given by
f 2

ref =qref &m2. As discussed in Section III.A, qref can be obtained by direct
averaging over the random-field distribution. It is much more convenient,
however, to calculate the properties of the reference system from the third
``Maxwell relation'', Eq. (52). When J=0, this equation leads to

�cc, ref (m, h� 0)

�h� 0

=&h� 0

�2

�m2

1

cc, ref (m, h� 0)
(67)

for the Gaussian distribution, and

�

�h� 0

1

1&m2& f 2
ref (m, h� 0)

= &
�2fref (m, h� 0)

�m2 (68)

for the bimodal distribution. These equations are solved by imposing the
boundary conditions at m=0: qref (0, h� 0)=1�- (2?) ��

&� exp(&u2�2) tanh2

(uh� 0) du for the Gaussian distribution and qref (0, h� 0)=tanh2(h� 0) for the
bimodal distribution (moreover, fref and cc, ref are even functions of m).
This is how we have obtained the series for qref in Eqs. (24) and (25).

It may be noticed that Eqs. (60) and (66) have a different behavior in
the limit h0 � 0. Indeed, z and cc are even functions of h0 whereas f is an
odd function. Therefore, the solution of Eq. (66b) when h0 � 0 is f =0,
which leads to cc=P(z)�(1&m2) so that z is identical to the solution of
the equation for the pure system that has been considered in ref. 24. On
the contrary, in the Gaussian case, the solution of Eq. (60b) is not cc=
P(z)�(1&m2) when h0 � 0, and one does not recover the pure system
results. The discrepancy, however, is extremely small.

In ref. 24, the numerical integration of the SCOZA partial differential
equation for the pure Ising model was performed by rewritting this equation
as a quasi-linear diffusion equation for which implicit predictor-corrector
algorithms are available in the literature. The numerical integration of the
coupled PDE's, Eqs. (60) or (66), is more difficult and we defer this task to
a later work. Note however that an interesting feature of the theory is that a
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single run of integration steps sweeps the whole parameter space, so that the
phase diagram in the T&h0 plane can be obtained at once. In what follows,
we only give some preliminary results obtained from series expansions.

The SCOZA equations are indeed quite suitable for deriving high-tem-
perature series. Since z vanishes when J� � 0, one can expand the Green's
function P(z) in powers of z,

P(z)=1+ :
k�2

Pkzk (69)

(with P2=1�c), and substitute into the PDE's. We then express z(m, J� , h� 0),
cc(m, J� , h� 0) and f (m, J� , h� 0) as triple series in J� , m and h� 0 ,

z(m, J� , h� 0)=(1&m2) :
i, j, k

zijkh� 2k
0 m2jJ� i (70)

cc(m, J� , h� 0)= :
i, j, k

cijk h� 2k
0 m2jJ� i (71)

f (m, J� , h� 0)= :
i, j, k

fijk h� 2k+1
0 m2jJ� i (72)

by using the fact that z vanishes when m=\1. Eventually, we must gather
in C� con(k=0) all terms at a given order in ; in order to obtain from Eqs.
(21) and (55a) the high-temperature series expansion of the zero-field
susceptibility. A careful analysis of the PDE's shows that to calculate
/(m=0) through the order ;n it is sufficient to consider the triple series,
Eqs. (70)�(72), up to finite values of i, j, k: imax=n, jmax=n&i and
kmax=n&i or (n&i)�2 for the Gaussian or bimodal distribution, respec-
tively (this is for Eqs. (70) and (71); in Eq. (72), kmax=n&i&1�2 or
(n&i&1)�2). The crux of the calculation is that the coupled PDE's reduce
at each order in J� , m, h� 0 to a system of linear algebraic equations in the
unknown coefficients zijk and cijk or zijk and f ijk . In consequence, the whole
calculation can be performed with reasonable effort using a symbolic com-
putation software like MAPLE or MATHEMATICA. The results for the
hypercubic lattice in general dimension are

/(m=0)=1+2d(;J )+(&2d+4d 2&g)(;J )2

+(4d�3&8d 2+8d 3&4dg)(;J )3

+(10d�3+16d 2�3&24d 3+16d 4+(4d&12d 2) g+2g2)(;J)4

+(&28d�3+88d 2�5+24d 3&64d 4+32d 5

+(&8d�3+24d 2&32d 3) g+10dg2)(;J )5+ } } } (73)

822 Kierlik et al.



for the Gaussian distribution, and

/(m=0)=1+2d(;J )+(&2d+4d 2&g)(;J )2

+(4d�3&8d 2+8d 3&4dg)(;J )3

+(10d�3+16d 2�3&24d 3+16d 4+(4d&12d 2) g+2g2�3)(;J )4

+(&28d�3+88d 2�5+24d 3&64d 4+32d 5

+(&8d�3+24d 2&32d 3) g+14dg2�3)(;J)5+ } } } (74)

for the bimodal one (here g=4d 2g~ as in ref. 12). Comparison with the
exact series(12) shows that the SCOZA series are exact through the fourth-
order term (at the order ;5, the only inexact coefficients are those of d and
d 2 which take the values &28�3 and 88�5 instead of &116�15 and 16,
respectively). More generally, the numerical values of the higher-order coef-
ficients are in remarkable agreement with the exact ones. As an illustration,
the terms of order ;15 are given in Appendix C for both distributions (note
that at each order in ; the coefficient of the highest-order term in g is exact:
this is because the reference system is treated exactly as a boundary condi-
tion to the PDE's). Similar series expansions can be obtained for the struc-
ture factor G� 11(k=0) and for other types of lattice (one only has to use the
corresponding Green's function in the PDE's).

Table I. Inverse Critical Temperature and Critical Exponent # for the
5d Hypercubic Lattice (Gaussian Distribution)a

;c J #

g~ RPA ORPA SCOZA ``exact'' SCOZA ``exact''

0 0.1000 0.1156 0.1139 0.1139 1.031 1
0.08 0.1087 0.1370 0.1311 0.1315 1.094 1.12
0.10 0.1112 0.1438 0.1369 0.1369 1.142 1.13
0.12 0.1138 0.1514 0.1425 0.1428 1.133 1.14
0.14 0.1165 0.1601 0.1492 0.1493 1.148 1.142
0.15 0.1179 0.1649 0.1528 0.1529 1.158 1.144
0.18 0.1224 0.1818 0.1656 0.1665 1.192 1.245
0.20 0.1257 0.1959 0.1759 0.177 1.219 1.28
0.25 0.1349 0.2489 0.2090 0.213 1.190 1.30

a The SCOZA predictions have been obtained from a [5�6] Dlog Pade� analysis of the high-T
series expansion of the zero-field susceptibility. The ``exact'' results are taken from ref. 12,
except for g=0 which is taken from ref. 39. Note that g in ref. 12 corresponds to our g~ multi-
plied by c2=100.
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Table II. Same as Table I but for the Bimodal Distribution

;c J #

g~ RPA ORPA SCOZA ``exact'' SCOZA ``exact''

0 0.1000 0.1156 0.1139 0.1139 1.031 1

0.05 0.1057 0.1296 0.1251 0.1253 1.077 1.0

0.07 0.1085 0.1379 0.1312 0.1314 1.087 1.1

0.08 0.1100 0.1430 0.1347 0.1349 1.090 1.11

0.09 0.1116 0.1494 0.1386 0.1389 1.086 1.11

0.10 0.1134 0.1577 0.1431 0.1435 1.077 1.135

0.11 0.1154 0.1700 0.1473 0.1488 1.005 1.15

0.12 0.1175 �� 0.1546 0.1552 1.073 1.18

Fig. 1. Phase diagram of the random field Ising model with a Gaussian distribution in d=5.
Comparison of the mean-field (long-dashed line), ORPA (short-dashed line) and SCOZA
(solid line) predictions to the ``exact'' phase boundary (dots).(12) The SCOZA results are
obtained from the high-temperature series expansion of the zero-field susceptibility. In prin-
ciple, the SCOZA line should continue down to Tc=0 but no reliable Pade� approximant has
been found at low temperatures.
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We now turn to more quantitative predictions. Assuming that
/(m=0)tK(1&T�TC)&# near T=Tc , we have performed a Dlog Pade�
analysis of the high-T series (since we hope to have a numerical solution
of one PDE's in the near future, we have not tried to apply more
sophisticated methods of analysis such as the ones used in ref. 12). For the
critical temperature, the convergence between the different approximants is
fairly good and the results in d=5 using a [5�6] approximant are given in
Tables I and II (this approximant has been chosen because of its smooth
behavior as a function of g~ ). We see that the SCOZA predictions are in
very good agreement with the estimates obtained from the exact high-tem-
perature series expansion.(12) The phase diagrams displayed in Figs. 1 and 2
show that the improvement on the RPA and the ORPA is indeed remarkable.
On the other hand, the predictions for # are rather sensitive to the order
of the approximant and are therefore less reliable than for the critical tem-
perature. # must anyhow be interpreted here as an effective exponent since
we expect to obtain the random-field spherical-model exponents asymptoti-
cally (this is not yet proved, however). The increase of # with g has been
noted in preceding studies(12) but for a serious discussion we must wait
until the numerical solution of the PDE's is available.

Fig. 2. Same as Fig. 1, but for the bimodal distribution. Only the portion of the curves
corresponding to a second-order transition is represented. The crosses locate the tricritical
points. The SCOZA tricritical point is estimated from a 1�d series expansion at second order.
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Table III. Inverse Critical Temperature and Critical Exponent # for the
3d Simple Cubic Lattice (Gaussian Distribution)a

;cJ #

g~ SCOZA ``exact'' SCOZA ``exact''

0 0.2205 0.2217 1.22 1.24
0.00417 0.2237 0.2268 1.26 1.7
0.00694 0.2258 0.2305 1.28 2.1
0.01389 0.2313 0.238 1.34 2.1
0.02083 0.2375 0.24675 1.42 2.2
0.02778 0.2450 0.25825 1.56 2.7

a The SCOZA predictions have been obtained from a [5�6] Dlog Pade� analysis of the high-T
series expansion of the zero-field susceptibility. The ``exact'' results are taken from ref. 12.
Note that g in ref. 12 corresponds to our g~ multiplied by c2=36.

Because of the Ornstein�Zernike assumption, the SCOZA, like the
ORPA, does not yield a sharp phase transition for d�4 (cf. the discussion
in Section III.B). The truncated high-T series expansions, however, are not
sensitive to the absence of a true singularity, and we can still perform a
Pade� analysis. The results are compared in Tables III and IV to the
estimates of ref. 12 for the 3-dimensional RFIM. We see that the critical
temperatures are still described with good accuracy (at least for the small
fields considered here and in ref. 12 that are relevant for experimental
realizations of the RFIM in magnetic systems). The values of the effective
critical exponent #, on the other hand, seem more problematic. We thus
provisionally conclude that the smearing out of the phase transition in 3-d
(and the fact that the critical exponent ' is not small any more) does not
destroy the quality of the theory for (extrapolated) nonuniversal quantities.

Table IV. Same as Table III but for the Bimodal Distribution

;cJ #

g~ SCOZA ``exact'' SCOZA ``exact''

0 0.2207 0.2217 1.23 1.24
0.00417 0.2236 0.2267 1.26 1.75
0.00694 0.2258 0.2304 1.28 2.05
0.01389 0.2322 0.238 1.36 1.95
0.02083 0.2419 0.2478 1.61 2.25
0.02778 0.2484 0.260 1.60 2.75
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A similar conclusion has been reached in the case the 2-dimensional pure
Ising model in zero field.(41)

To discuss the possible occurence of a tricritical point in hypercubic
lattices, it is more convenient to consider 1�d expansions. These can be
obtained either by using the 1�d expansion of the Green's function,
P(z)=1+z2�(2d )+3z4�(2d )2+ } } } , or by using the conventional scaling
J=1�(2d ) to reorganize the J� -expansions. In the pure Ising model, this
latter procedure readily yields the 1�d expansion of the critical temperature
around the mean-field d � � limit. In the RFIM, the calculation is more
complicated because the mean-field critical temperature is itself solution of
an implicit equation, Eq. (35). In consequence, we cannot use the conven-
tional high-temperature ;-expansion as a starting point, but rather the
J� -expansion at constant h� 0=;h0 . In order to get the systematic corrections
around mean-field theory, it is more convenient to take qref (m=0)=
tanh2(h� 0{) instead of h� 0 as independent variable in the PDE's. All this
complicates the formal procedure, especially in the Gaussian case, and we
have computed the expansion only through order 2. For the bimodal dis-
tribution, we find that the inverse zero-field susceptibility is given by:

/&1(m=0)=
1

1&x
&J� +

J� 2

2d
(1+x)(1&2x)

1&x

+
J� 3

(2d )2

1
1&x _

2
3

(1+x)(5x2+2x&1)

&J� (18x4&32x3+12x2+x&1)&+O \ 1
d 3+ (75)

where x#qref (m=0, h� 0)=tanh2(h� 0). The coefficient of the 1�d term can be
shown to be exact. The above expression yields the expansion of J� c around
the mean-field inverse critical temperature J� MF

c , solution of Eq. (35). The
result is reproduced here only to first order:

J� c

J� MF
c

=1+
1

2d
1

1&xMF
c

(1+xMF
c )(1&2xMF

c )
1&xMF

c &2( g~ xMF
c )1�2+O \ 1

d 2+ (76)

where xMF
c =1&1�JMF

c . The tricritical point is obtained by solving
simultaneously the equations /&1(m=0)=0 and �2/&1��m2 |m=0=0 (since
one always has classical mean-field critical exponents in a 1�d expansion,
we take here $=3). This yields

J� t=
3
2

+
3

2d
&

23
32d 2+O \ 1

d 3+ (77)

827SCOZA for Random Field Ising Model



and

g~ t=0.1927&
0.1320

d
&

0.4950
d 2 +O \ 1

d 3+ (78)

(recall that g~ =h� 2
0�J� 2). We thus approximately locate the tricritical point in

d=5 at J� t=1.771 and g~ t=0.147 (see Fig. 2). This confirms the conclusion
reached with the ORPA: there is a range of field strengths (for instance,
0.147<g~ <0.193 in 5-d) where the transition is driven first-order by fluc-
tuations. The anomalous behavior of # observed at large g in Table II is
probably related to a crossover to this tricritical behavior. In d=3, we
approximately locate the tricritical point at J� t=1.920 and g~ t=0.0937,
which is in agreement with previous series expansion calculations.(11)

For the Gaussian distribution, we find

/&1(m=0)=
1

1&x
&J� &

J� 2

2d _1&x+
xK(x)

(1&x)2&
+

J� 3

(2d )2 {2
3

K(x)(1+x)
K(x)&2(1&x)2

(1&x)3

+J� _ x
(1&x)3 K 2(x)+

x2

4(1&x)2

dK 2(x)
dx

+2xK(x)+(1&x)3&=+O \ 1
d 3+ (79)

where x=1�- (2?) ��
&� exp(&u2�2) tanh2(uh� 0) du and K(x)=(2h� 0)&1 dx�dh� 0 .

The function K(x) can be calculated once for all; one has K(x)=1&4x+
9x2&24x3+96x4+O(x6), and since x=1&- (2�?) h� &1

0 +O(h� &2
0 ) when

h� 0 � �, (4) K(x)t(?�4)(1&x)3 when x � 1. Here too, the expansion is
exact to first order in 1�d. The resulting expansion of J� c is:

J� c

J� MF
c

=1+
1

2d _1+
K(xMF

c )(xMF
c +2g~ )

(1&xMF
c )3&2g~ K(xMF

c )&+O \ 1
d 2+ (80)

The expansion given by Eq. (79) also permits to calculate the expan-
sion of g*, the variance of the random-field distribution for which Tc=0.
We find

g*=
2
?

&
1

2d \1+
4
?+&

1
(2d )2 \1

3
+

6
?++O \ 1

d 3+ (81)
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Since there is no tricritical point in infinite dimension, we cannot perform
a perturbative expansion of J� t or g~ t around mean-field theory. However, we
can expand the equations /&1(m=0)=0 and �2/&1��m2 |m=0=0 in
powers of 1�d and look for a solution at a given value of d. For d�5 there
is no indication that a tricritical point occurs. On the other hand, the
calculation at order 1�d 2 suggests that the transition becomes first order for
sufficiently strong disorder when d�4.2. This is certainly a rough estima-
tion which must be confirmed by the numerical solution of the PDE's. The
fact that dr4 might be a ``critical'' dimension for the Gaussian RFIM has
been also suggested by previous high-T series analysis. (11)

Finally, we have also calculated the high-T and 1�d series expansion of
the quantity A defined as

A= lim
T � Tc

1

h� 2
0

G� dis(k=0)

G� 2
con(k=0)

= lim
T � Tc

1

h� 2
0
_C� 2

01(k=0)

C� 00(k=0)
&C� dis(k=0)& (82)

It has been argued in the literature(42, 43) that A should be equal to 1. In
agreement with the analysis of ref. 12, we find that A is always finite (this
is here a direct consequence of the OZ approximation for the correlation
functions) and close, but not exactly equal to unity.

VI. CONCLUSION

In applying liquid-state methods to randomly disordered magnetic
systems, our main objective is to compute accurately the non-universal
properties of these systems (not only Tc , but the full phase diagram in an
external field and the pair correlations as well). Indeed, these methods
represent an easy way to include some fluctuations into an analytical treat-
ment and therefore to go beyond the mean-field approximation. The
calculations of the preceding section, based on the analysis of high-T and
1�d series expansions, shows that the thermodynamically self-consistent
Ornstein�Zernike approximation (SCOZA) succesfully predicts the critical
temperature Tc(h0) of the RFIM in dimension d>4 for both the Gaussian
and bimodal distributions (at least in the range of disorder strength where
we can compare to the available ``exact'' results). The theory remains
accurate in d=3 despite the fact that the transition is smeared out (strictly
speaking, Tc=0 for d�4 because of the Ornstein�Zernike assumption
which implies '='� =0). For the bimodal distribution, we find that the
phase transition becomes first-order for sufficiently strong random fields, in
agreement with mean-field theory, (5) and that the tricritical point moves
to weaker fields as the dimension is reduced. A tricritical point may also
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appear in the Gaussian case for d around 4, but the numerical solution of
the partial differential equations is needed to settle this question. This
numerical solution, when available, will also permit to probe the critical
region and to calculate the effective exponents above Tc . The analytical
determination of the true asymptotic exponents, especially on the
coexistence curve, and the elucidation of the scaling behavior of the theory
are also challenging tasks (we indeed expect a nontrivial critical behavior
below Tc as in the case of the pure Ising model(24)). The accuracy of the
theory shows that the assumption that the connected and disconnected
direct correlation functions have the same range as in the RPA (i.e., essen-
tially the same range as the interaction potentials) is quite reasonable, as
long as one does not approach the critical point too closely or go to very
low temperatures (the exact structure of the correlation functions is cer-
tainly more complicated at low temperatures, as illustrated by the exact
results in 1-d(44)). The SCOZA can be easily generalized to the n-compo-
nent version of the RFIM, as it has been done for the pure Ising model.(45)

One can then show that the theory becomes exact in the spherical-model
limit n � �. This suggests that the SCOZA should be even better for the
classical random-field X-Y or Heisenberg models than for the Ising version.
Finally, it must be stressed that all the above results assume that replica
symmetry is not broken in finite dimensions. Although this may have only
a limited effect on the values of most nonuniversal properties, this assump-
tion must be justified (or invalidated) by studying the stability of the
replica symmetric solution. This will be done in a forthcoming paper
devoted also to the application of the SCOZA to the Edwards�Anderson
spin-glass model.(26)

APPENDIX A

In the case of the Gaussian distribution, one usually averages
exp(&;Hn) over disorder to get an effective Hamiltonian

Heff ([_a
i ])=&J :

(ij), a

_a
i _a

j &
;h2

0

2
:

i, a, b

_a
i _b

i &H :
i, a

_a
i (A1)

The species 0 does not appear any more but the replicas are now inter-
acting. The corresponding RSOZ equations are

G� con(k)=
1

C� con(k)
(A2a)

G� dis(k)=&
C� dis(k)

C� 2
con(k)

(A2b)

830 Kierlik et al.



Working first in replica space and then taking the limit n � 0, it is
easily shown that the differential expression for the Gibbs potential is now

d(;G�N)= & 1
2 (G11(r=e)+m2) dJ� &h� 0Gcon(r=0) dh� 0+;H dm (A3)

({� =0 for the Gaussian distribution). Because of Eq. (57), one thus gets the
same Maxwell relations as Eqs. (50)�(52). On the other hand, some care
must be taken in computing the internal energy or the enthalpy. The internal
energy is obtained from U=limn � 0 �Ueff ��n where Ueff satisfies the Gibbs�
Duhem relation Ueff=�(;Feff )��;. Since the Hamiltonian Heff is temperature-
dependent, one has the unusual expression Ueff=(Heff+; �Heff ��;) eff where
( } } } ) eff denotes the average with respect to Heff . From Eq. (A1), this gives

Ueff

N
=&

cJ
2

:
a

[Gaa(r=e)+m2
a]&;h2

0 :
a, b

[Gab(r=0)+ma mb]&H :
a

ma

(A4)

Taking the limit n � 0 and using Eqs. (10) and (12), one obtains

E�N=&
cJ
2

[G11(r=e)+m2]&;h2
0Gcon(r=0) (A5)

which, owing to Eq. (57), reduces to Eq. (53), as it should be.
Since the interaction between replicas is on-site, the range of the

SCOZA direct correlation functions C SCOZA
con (r) and C SCOZA

dis (r) is also
unchanged,

C SCOZA
con (k)=c$c(m, J� , h� 0)[1&z$(m, J� , h� 0) *� (k)] (A6a)

C SCOZA
dis (k)=c$d (m, J� , h� 0) (A6b)

so that

G SCOZA
con (r)=

1
c$c

P(r, z$) (A7a)

G SCOZA
dis (r)=&

c$d
(c$c)2

�
�z$

[z$P(r, z$)] (A7b)

It is then clear that the requirement that Eqs. (13), (50) and (51), together
with the exact initial conditions at J� =0, be satisfied implies that z$=z and
c$c=cc and c$d=cd&c2

01 .
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APPENDIX B

We consider the asymmetric bimodal distribution

P(h)=p$(h&h0)+(1&p) $(h+h0) (B1)

One has {� =2p&1 and c00=[4p(1&p)]&1. Introducing f (m, p, J� , h� 0)=
&c01 �cc and r2(m, p, J� , h� 0)=(c2

01 �c00&cd)�c2
c as new unknown variables,

we use Eq. (13) to eliminate cc , i.e.,

cc=
P(z)

1&m2&r2[P(z)+zP$(z)]
(B2)

and we obtain from Eqs. (50), (51), (56), and (63) three coupled PDE's in
z(m, p, J� , h� 0), f (m, p, J� , h� 0) and r(m, p, J� , h� 0),

�

�J� _
(1&z) P(z)

1&m2&r2[P(z)+zP$(z)]&
= &1&

1
2

�2

�m2 {[1&m2&r2(P(z)+zP$(z))]
P(z)&1

zP(z)
+r2P$(z)=

(B3a)

4p(1&p)
�

�J�
[ fP(z)]

=
1
2

�

�h� 0
{[1&m2&r2(P(z)+zP$(z))]

P(z)&1
zP(z)

+r2P$(z)= (B3b)

�

�J� _
fP(z)

1&m2&r2[P(z)+zP$(z)]&
=

1
4

�2

�p �m {[1&m2&r2(P(z)+zP$(z))]
P(z)&1

zP(z)
+r2P$(z)= (B3c)

As explained in Section V, the solution of the SCOZA partial differen-
tial equations can be easily obtained in terms of high-temperature series
expansions. The remarkable feature of the solution of Eqs. (B3) is that one
has cd �c2

c #4p(1&p) f 2&r2=0 through order ;5. More precisely, for the
hypercubic lattice in general dimension, we find

cd�c2
c=

4096
5

d 5p2(1&p)2 g~ 2m(1&m2)4 _&5m+8dg~ 1�2 \p&
1
2+& ;6+O(;7)

(B4)
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Note that this term cancels out when m=0 (this is no longer true for the
next-order term). This implies that the zero-field susceptibility for the sym-
metric bimodal distribution is the same through order ;6 when calculated
from Eqs. (B3) or from Eqs. (66). A more complete study based on a
twelve-term series expansion shows that cd=0 is a very good approxima-
tion when p=1�2. On the other hand, it would also be worth studying also
the full solution of Eqs. (B3). Indeed, it is easily seen that the same equa-
tions are obtained for the probability distribution P(h)=p$(h&h0)+
(1&p) $(h+h1) ( just define { by h=1�2[(h0+h1) {+(h0&h1)]. In mean-
field theory, this asymmetric RFIM has a rich phase diagram with several
coexistence surfaces(40) and it has been claimed to be relevant to the liquid-
vapor coexistence boundary of 4He confined in silica aerogel.

APPENDIX C

To illustrate the accuracy of the SCOZA, we show here the terms
a[15] in the high-T series expansion of the zero-field susceptibility,
/(m=0)=��

n=0 a[n](;J )n. These results can be compared to the exact
ones given in ref. 12. One finds

a[15]=32768d 15&229376d 14+1835008d 13�3&3923968d 12�5

+19566592d 11�45+62568448d 10�315+2393632768d 9�5775

+1309641268736d 8�225225+344496180736d 7�8775

&250795760924032d 6�259875

+1073182266768952832d 5�212837625

&2633146526329112672d 4�212837625

+687607165382389072d 3�42567525

&6687777748364066392d 2�638512875

+522635516549738848d�212837625

+(&114688d 13+638976d 12&1306624d 11+3549184d 10�3

&6071296d 9�15&26430464d 8�45&5725256704d 7�10395

+530937363712d 6�289575+87605199818176d 5�2027025

&24080214624448d 4�135135+1584841452347248d 3�6081075

&75721982136512d 2�405405+357823952018272d�6081075) g
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+(184320d 11&768000d 10+1136640d 9&3053568d 8�5

+2969344d 7�15&4845952d 6�105

&447235513408d 5�51975+2060640064288d 4�51975

&11034060991936d 3�155925+1826181780848d 2�31185

&4442599992d�275) g2+(&547840d 9�3+509952d 8

&4678144d 7�9+57472d 6&10716992d 5�315

+3003435424d 4�945&8105781856d 3�945+21474530792d 2�2835

&4915534784d�1701) g3+(384256d 7�3&187776d 6+1368512d 5�9

+2739616d 4�45&85830176d 3�135

+262363504d 2�315&10055056d�105) g4+(&355008d 5�5

+52160d 4�3&666224d 3�15+23348344d 2�225

&14219344d�225) g5+(1560464d 3�45

+1000808d 2�45&199312d�9) g6&4709644dg7�315 (C1)

for the Gaussian distribution function, and

a[15]=32768d 15&229376d 14+1835008d 13�3&3923968d 12�5

+3940352d 11�9+59213824d 10�315

+7336961024d 9�17325+261515720192d 8�45045

+26451169582592d 7�675675

&1086932402689792d 6�1126125+27530806058894912d 5�5457375

&877599448749913984d 4�70945875+255326320300912d 3�15795

&2202231489060446384d 2�212837625

+1549572126103322224d�638512875

+(&114688d 13+638976d 12&1306624d 11+3528704d 10�3

&1995776d 9�5&8554496d 8�15&167141888d 7�297

+14174567936d 6�6435+10235242804672d 5�225225

&29834386736192d 4�155925+596984424197072d 3�2027025

&407009452618592d 2�2027025+310791876465968d�6081075) g
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+(151552d 11&1853440d 10�3+892928d 9&1246720d 8�3

+29252864d 7�315&3510912d 6�35

&65936770624d 5�7425+1238778408016d 4�31185

&11162124651232d 3�155925+7782983079632d 2�155925

&19615564589086d�467775) g2

+(&846848d 9�9+3586048d 8�15&6394880d 7�27

&1122176d 6�45&1242688d 5�105+997169632d 4�405

&52631828384d 3�8505+4259397904d 2�675

&817609382692d�127575) g3+(1751296d 7�63

&433024d 6�15+1367232d 5�35+115455808d 4�4725

&1154097376d 3�4725+9855809872d 2�33075

&20089162036d�99225) g4+(&16538048d 5�4725

&474176d 4�567&85810544d 3�14175

+543224408d 2�70875&3984248d�6075) g5+(65701616d 3�467775

+18472712d 2�155925+23549048d�1403325) g6

&35397196dg7�42567525 (C2)

for the bimodal distribution.
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